DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization

نویسندگان

چکیده

The context of this research is multiobjective optimization where conflicting objectives are present. In work, these only available as the outputs a blackbox for which no derivative information available. This work proposes new extension mesh adaptive direct search (MADS) algorithm to derivative-free with bound constraints. method does not aggregate and keeps list non dominated points converges (local) Pareto set long unfolds. As in single-objective MADS algorithm, built around step poll step. Under classical assumptions, it proved that so-called DMulti-MADS generates multiple subsequences iterates converge local stationary points. Finally, computational experiments suggest approach competitive compared state-of-the-art algorithms optimization.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Multisearch for Multiobjective Optimization

In practical applications of optimization it is common to have several conflicting objective functions to optimize. Frequently, these functions are subject to noise or can be of black-box type, preventing the use of derivative-based techniques. We propose a novel multiobjective derivative-free methodology, calling it direct multisearch (DMS), which does not aggregate any of the objective functi...

متن کامل

Mesh Adaptive Direct Search Algorithms for Constrained Optimization

This paper introduces the Mesh Adaptive Direct Search (MADS) class of algorithms for nonlinear optimization. MADS extends the Generalized Pattern Search (GPS) class by allowing local exploration, called polling, in a dense set of directions in the space of optimization variables. This means that under certain hypotheses, including a weak constraint qualification due to Rockafellar, MADS can tre...

متن کامل

Erratum: Mesh Adaptive Direct Search Algorithms for Constrained Optimization

In [SIAM J. Optim., 17 (2006), pp. 188-217] Audet and Dennis proposed the class of mesh adaptive direct search algorithms (MADS) for minimization of a nonsmooth function under general nonsmooth constraints. The notation used in the paper evolved since the preliminary versions and, unfortunately, even though the statement of Proposition 4.2 is correct, is not compatible with the final notation. ...

متن کامل

Dynamic scaling in the Mesh Adaptive Direct Search algorithm for blackbox optimization

Blackbox optimization deals with situations in which the objective function and constraints are typically computed by launching a time-consuming computer simulation. The subject of this work is the Mesh Adaptive Direct Search (MADS) class of algorithms for blackbox optimization. We propose a way to dynamically scale the mesh, which is the discrete spatial structure on which MADS relies, so that...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Optimization and Applications

سال: 2021

ISSN: ['0926-6003', '1573-2894']

DOI: https://doi.org/10.1007/s10589-021-00272-9